Page 7 - CEMS Summer 2022 Newsletter
P. 7

                              FACULTY NEWS
Energy researchers invent chameleon metal that acts like many others.
Research could improve efficiency for storing renewable energy, making carbon-free fuels and manufacturing sustainable materials.
A team of energy researchers led by the University of Minnesota Twin Cities have invented a groundbreaking device that electronically converts one metal into behaving like another to use as a catalyst for speeding chemical reactions. The fabricated device, called a “catalytic condenser,” is the first to demonstrate that alternative materials that are electronically modified to provide new properties can yield faster, more efficient chemical processing.
The invention opens the door for new catalytic technologies using non-precious metal catalysts for important applications such as storing renewable energy, making renewable fuels, and manufacturing sustainable materials.
The research is published online in JACS Au, the leading open access journal of the American Chemical Society, where it was selected as an Editor’s Choice publication. The team is also working with the University of Minnesota Office of Technology Commercialization and has a provisional patent on the device.
Chemical processing for the last century has relied
on the use of specific materials to promote the manufacturing of chemicals and materials we use in our everyday lives. Many of these materials, such as precious metals ruthenium, platinum, rhodium, and palladium, have unique electronic surface properties. They can act as both metals and metal oxides, making them critical for controlling chemical reactions.
The general public is probably most familiar with this concept in relation to the uptick in thefts of catalytic converters on cars. Catalytic converters are valuable because of the rhodium and palladium inside them. In fact, palladium can be more expensive than gold.
These expensive materials are often in short supply around the world and have become a major barrier to advancing technology.
In order to develop this method for tuning the catalytic properties of alternative materials, the researchers relied on their knowledge of how electrons behave at surfaces. The team successfully tested
a theory that adding and removing electrons to one material could turn the metal oxide into something that mimicked the properties of another.
Paul Dauenhauer
 “Atoms really do not want to change their number of electrons, but we invented the catalytic condenser device that allows us to tune the number of electrons at the surface of the catalyst,” said Paul Dauenhauer, a MacArthur Fellow and CEMS Professor who led
the research team. “This opens up an entirely new opportunity for controlling chemistry and making abundant materials act like precious materials.” Dauenhauer also holds the Lanny & Charlotte Schmidt Endowed Chair.
The catalytic condenser device uses a combination
of nanometer films to move and stabilize electrons at the surface of the catalyst. This design has the unique mechanism of combining metals and metal oxides with graphene to enable fast electron flow with surfaces that are tunable for chemistry.
“Using various thin film technologies, we combined a nano-scale film of alumina made from low-cost abundant aluminum metal with graphene, which we were then able to tune to take on the properties of other materials,” said Tzia Ming Onn, a post-doctoral researcher at the University of Minnesota who fabricated and tested the catalytic condensers. “The substantial ability to tune
continued on page 18
CEMSnews Summer 2022 7
         














































































   5   6   7   8   9